Chaperone function and mechanism of small heat-shock proteins.
نویسنده
چکیده
Small heat-shock proteins (sHSPs) are ubiquitous ATP-independent molecular chaperones that play crucial roles in protein quality control in cells. They are able to prevent the aggregation and/or inactivation of various non-native substrate proteins and assist the refolding of these substrates independently or under the help of other ATP-dependent chaperones. Substrate recognition and binding by sHSPs are essential for their chaperone functions. This review focuses on what natural substrate proteins an sHSP protects and how it binds the substrates in cells under fluctuating conditions. It appears that sHSPs of prokaryotes, although being able to bind a wide range of cellular proteins, preferentially protect certain classes of functional proteins, such as translation-related proteins and metabolic enzymes, which may well explain why they could increase the resistance of host cells against various stresses. Mechanistically, the sHSPs of prokaryotes appear to possess numerous multi-type substrate-binding residues and are able to hierarchically activate these residues in a temperature-dependent manner, and thus act as temperature-regulated chaperones. The mechanism of hierarchical activation of substrate-binding residues is also discussed regarding its implication for eukaryotic sHSPs.
منابع مشابه
Evidence for an essential function of the N terminus of a small heat shock protein in vivo, independent of in vitro chaperone activity.
To investigate the mechanism of small heat shock protein (sHsp) function, unbiased by current models of sHsp chaperone activity, we performed a screen for mutations of Synechocystis Hsp16.6 that reduced the ability of the protein to provide thermotolerance in vivo. Missense mutations at 17 positions throughout the protein and a C-terminal truncation of 5 aa were identified, representing the lar...
متن کاملHydroimidazolone Modification of the Conserved Arg12 in Small Heat Shock Proteins: Studies on the Structure and Chaperone Function Using Mutant Mimics
Methylglyoxal (MGO) is an α-dicarbonyl compound present ubiquitously in the human body. MGO reacts with arginine residues in proteins and forms adducts such as hydroimidazolone and argpyrimidine in vivo. Previously, we showed that MGO-mediated modification of αA-crystallin increased its chaperone function. We identified MGO-modified arginine residues in αA-crystallin and found that replacing su...
متن کاملOligomers of Heat-Shock Proteins: Structures That Don't Imply Function
Most proteins must remain soluble in the cytosol in order to perform their biological functions. To protect against undesired protein aggregation, living cells maintain a population of molecular chaperones that ensure the solubility of the proteome. Here we report simulations of a lattice model of interacting proteins to understand how low concentrations of passive molecular chaperones, such as...
متن کاملSmall Molecule Inhibitors to Disrupt Protein-protein Interactions of Heat Shock Protein 90 Chaperone Machinery
Heat shock protein 90 (Hsp90) is an adenosine triphosphate dependent molecular chaperone in eukaryotic cells that regulates the activation and maintenance of numerous regulatory and signaling proteins including epidermal growth factor receptor, human epidermal growth factor receptor 2, mesenchymal-epithelial transition factor, cyclin-dependent kinase-4, protein kinase B, hypoxia-inducible facto...
متن کاملGenetic analysis reveals domain interactions of Arabidopsis Hsp100/ClpB and cooperation with the small heat shock protein chaperone system.
We have defined amino acids important for function of the Arabidopsis thaliana Hsp100/ClpB chaperone (AtHsp101) in acquired thermotolerance by isolating recessive, loss-of-function mutations and a novel semidominant, gain-of-function allele [hot1-4 (A499T)]. The hot1-4 allele is unusual in that it not only fails to develop thermotolerance to 45 degrees C after acclimation at 38 degrees C, but a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biochimica et biophysica Sinica
دوره 46 5 شماره
صفحات -
تاریخ انتشار 2014